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problem. Hence, solution of (3.25) can also be regarded as computation of the optimal 

correction in the case when only one measurement is possible during motion. It is expe- 
dient to make this measurement immediately before correction, i. e. at the instant 1: 

given by Eqs. (3.25). 
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Questions arising in solving the problem of design of the optimum contour of the super- 
sonic portion of plane and axisymmetric nozzles for flows involving any nonequilibrium 
processes are considered. An investigation is carried out on the example of the flow of 
gas containing foreign particles (solid, or liquid) by using Lagrange multipliers in the 
form first appIied to problems of supersonic gas dynamics by Guderley and Armitage p]. 

The exactly formulated problem of design of the supersonic portion of plane and axi- 
symmetric nozzles for nonequilibrium flows were considered in papers p and 31, while 

papers [4 and 51 dealt with the problem of flow of gas with foreign particles, In deriving 

the conditions necessary for the determination of the optimum authors of these papers 
had considered that case only in which the first set characteristic bounding on the right 
the region of influence of the sought contour intersects the rarefaction wave beam clo- 

sing characteristic originating in the flow past the starting point of a (contour) kink, or 
in the case of a curvature constraint in the flow past the initial section of the maximum 
permissible curvature (*). The consideration of that case only appeared natural, as for 

*) As will be clear from the following, in this case in the system of conditions derived 
in [4 and 5) the conditions along the particle streamline separating the region containing 
particles from the particle-free gas have been lost. 
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stabilized flows the given configuration was the only one possible [S]. Solution of vari- 

ational problems in univariate approximation n-10] had at the same time shown that 
with nonequilibrium flows an increase of the nozzle optimum length for a given back 

pressure always results in an increase of its thrust, contrary to the equilibrium case in 

which there exists a certain nozzle length beyond which the thrust ceases to increase. 
From the solution of the variational problem of the optimum slender profile for non- 
equilibrium flows [ll] it follows moreover that nonequilibrium leads to the decrease of 
the kink magnitude at its starting point. These conclusions are in agreement with physi- 

cal c0nceFt.s of the relation between thrust losses and deviation from equilibrium. It 

appears therefore expedient to consider as a possible optimal configuration, besides the 
scheme investigated in l2-51. the contour the closing characteristic of which begins at 
the axis of symmetry outside of the rarefaction wave beam. It appears that if such a 

contour is optimal, it must have inner kink points. 

1. Using the model of a two-velocity two-temperature continuous medium as an 

approximation. we shall consider a stationary or axisymmetric flow of a mixture of gas 
and foreign particles (solid or liquid). Let X, y be orthogonal coordinates with the 

x-axis directed from left to right along the axis of symmetry, p the density, p the pres- 
sure, h the specific enthalpy, V = (u, v) the gas velocity vector, P6 the mean density, 

T, the temperature, e& = I?, (T,) the specific inner energy, V, = (u,, v,) the “gas- 

particle” velocity vector, f = vx, f,,) the gas and particles interaction force, and Q 
the heat flux between these both related to the particle unit mass, with Y = 0 , or 1 for 
the plane and axisymmetric cases respectively. Then, in the absence of phase transfers, 
external forces and heat sources, and neglecting the volume of particles, the flow here 

considered will be defined by Eqs. (see, e. g. , [12]) 

L@6,~+ *6s- f,=O, L&J,~f v,%-fy=O (1.1) 

0 

L,~lp,~‘?+ v~~-q=O (N =%[(V.- V)f+ !?I) 

System (1.1) is completed by the expressions of h, f and q, which we shall write in 
the form 

h = h @, p), f = f ($4 p, u, v, %, V,, T,), !I = Q (PC ~9 U, D, 4, VI, T,) 
This assumes in particular a thermodynamic equilibrium of the gas (but not between 

the gas and particles). 
For w E ] V 1 > O, where a is the velocity of sound in the gas , and is expressed by: 

a-’ = (i - pb) / ph, (op = (a0 / ap,,, WY; = @co / Wp) 

system (1.1) has four sets of real characteristics. These are the gas streamlines along 
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which 

ld - u = 0, fblh' - up' + plv = 0, VlP’$ pW/2)‘1+ prfV*=O 
the particle streamlines where 

V.2’ - u, = 9, v, (IQ) - 2fv, = 0, v,e# - 9 - 9 (Ipr - I v, I) 

and two sets of Mach lines satisfying Eqs. 

(1.2) 

(1.3) 

(1.4) 

x’ = 
-uv f 0 ~w~-d 

an- us 

aafu(vt’-u) , 

PZ’ 
p’ f U'VU + $-["'-(VZ'- IA)‘] + 

+ (11 (VZI - u) ( vu 
- - 

Y 
+fv-+ 

P > 
+ + [u’ + u (vx’ --u)1(1++ -&,) =o 

Primes in (1.2) - (1.4) denote derivatives with respect to y taken in the appropriate 
direction, and the upper (lower) sign in (1.4) defines the direction of characteristics of 
the first (second) set. 

2. Let it be required to define the nozzle contour ag which would ensure the maxi- 

mum of thrust % for a known supersonic flow at entry, i.e. to the left of a certain char- 
acteristic UC of the second set, as shown on Fig. 1. where characteristics of the first and 
second sets are drawn in thin lines. The nozzle maximum length X, its surface area, 
etc. may be prescribed in addition. 

Generally, for reasons stated in the previous- 
ously considerd problems, there exists at point 
a #a kink (absence of curvature constraints is 
assumed), and if the (nozzle) length is limited, 

the optimal contour may be provided with an 

end face bgwhere x E X. 
We shall confine ourselves to the case in 

which at point tz a flow past a convex angle 
is realized, with the pressurep+on the pre- 
sumed end face constant and independent of 
the unknown contour form(absence of flow of 

gas past the end face, or its part during the 

Fig. 1 variation of these is assumed). Then, with an 
approximation to the negligibly small terms 

and factors 

X = s” YWY + 1 y’p’dy 
(1 

and the possible m isoperimetric conditions will be presented in the form 

x, x’, u, p, p) dy + cp”’ (Y, x, 4 dy (i= 4, . - . . m) (2.4) 
a b 

where KJ are given constant, and $and @known functions ; subscripts a, b... (except 
subscript a) denote parameters at corresponding points, and integration is carried out 
along the nozzle contour. 

Due to particle lag a layer of particle-free gas is usually formeds along the wall [13 
and 141, and this has been taken into account in (2.1). In principle particles may still 
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reach the wall, which generally is undesirable. Taking this into account we shall con- 

sider out of all possible contours defined by Eq. z = E (II) only those for which 

C(y)-_E(y)>H>O for %<Y<Yb (2.2) 
where x = 6 (y) is the equation,of the particle streamline a’b’ bounding from below 

the particle-free gas, as shown on Fig. 1 by the dotted line, andH is either given constant, 
or a known function of y. 

3. In ordeI to solve the problem we compile the functional 

I=1 [@+a (V- t)] dy+[Fdy+ 2:p.ipl(u.i’-u.)+~*4+ 

+ BaLo + P&l &/ + i$ (i IQ% + pa i 1.6) dx dy 
C k=l k=6 

j=l 

F (Yg Xv X’, A) = Y'P+ + 2 Q+‘Oj (Yt Xv 5’) 
j=l 

Herea, are constants a = a (y), pi = p1 (y) and pi = .j~,i (x, y) are variable 

Lagrange mulipliers, and G the sought contour influence region generally bounded by 
the last characteristic of beam ah, the axis of symmetry hd, the first-set character- 

istic dd and the contour ab itself. 
For permissible variations the variations in 1 and X coincide by virtue of (I. 1) - 

(1.3) and (2.1). 
The conditions necessary for maximum % defining the optimal contour form are 

obtained from the analysis of the first variation 6~ = 61. Such countours ab may in 

accordance with (2.2) consist of sections of two kinds (Fig. 1). viz., sections ak and mb 
where z - 5 (Y) - E (Y) i H > 0 (3.1) 
and the nozzle contour may be arbitrarily varied, and also of sections (one of such sec- 
tions .km,is shown on Fig. 1) where 

z = 5 (Y) - E (Y) - H = 0 (3.2) 

and the only permissible variations are those which increase the distance between the 
wall and the boundary streamlinea’b’, i. e. such that 6.z > 0. Junction points of the 
various contour sections will generally be kink points. Segments satisfying (3.1) may 

also connect at the kink points. Boundary line a’b’,as well as other particle streamlines 
along which x’= u,/v, have by virtue of the particle equations of motion less than two 
continuous derivatives (5’ and 5”) when H > 0. 

The variation of Z is carried out in conformity with [l. 2 and 151. Special consider- 
ation must be given to variation in kink point positions [15]. and lines of discontinuity 
of the Lagrange multipliers are permitted c2. and 151. When varying the ends of sections 
(3.2) translations in the direction of z’ - 5’ (61) only are arbitrary, while translations in 

other directions are bounded by condition 6z > 0. Because of the absence of particles 
along & it is furthermore considered that 6p = - pu&u - puhu, 6p = ama hp. 
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4. The selection of Lagrange multipliers is made in such a way as to obtain the dis- 

appearance of all variations in 6% , except 6g along sections (3.1) and 62 along sec- 

tions (3. a), and of the kink point coordinate increments. Such a selection is possible for 

any arbitrary contour (not necessarily the optimum one), and leads to equations with 
boundary conditions which define the Lagrange multipliers. 

The equations of PI,..., p4 in their continuity subregions of the influence area 

~bdica are equivalent to the following differential relationships : 

w'+ "pa'+ PIL3'--- h(u'+~)-p,(u'+ y-(Pl; +lh$ + 

-+ ia) P’ + P&P'- I+ + CL4 $ (s'fx+ f,)-pJx'P(u)+ P(v)] = 0 

+a’ + &pr’ - I+ +- u’ - pa 2-v V 
p -hpl PI-- 

-P.? p’-pa+p&.~ +p+pJ’(p)= 0 (4.1) 

fulfilled along the gas streamlines (1.Q and to two equations corresponding to the two 
values of 2’ in (1.4) 

vx’- u 

P 
vp1’ + u -yx 2 upat + (v + UX’) pa’ - p1 (T u’ + (4.2) 

vd- u 
-!----T- 

‘-I4 
Vp’+u2_-YV 

> ( 

ur-j- v 
- V’ 

vd- u 

P 
- Pa - -y--up’-- 

t’x’ - u 
- - YVZ’ 

YP > 
- pa f (u:’ + u) - pL1 {y..p. iz,p’ + ‘4 v2h, (;) + 

+ i+“h !?. __ 
Y 

p - k h, “5’ - u) (f, - +,) - 
P ( [ 

1 + $a _ @’ - ‘)’ 1 1 Ph, P 

-; (DX’- u) [P (u) - X’P (v) + p (“5’- u) P (p)] - ps (1 + 2’2) P(p) = 0 

which hold along the characteristics of the first and second sets of (1.4). Primes in(4.1) 
and (4.2) denote as before the total derivatives with respect to y taken along correspond- 
ing directions, and 

where r denotes any of the parameters on which f and q depend. 
Multipliers p6?..., IL8 which introduce into 1 the equations of particle motion are 

required in area a’b’dha’) only, and are defined here by the system 

&CL6 + P,’ - 2 V,f--~+‘+9$+79- (4.3) 

- b “8’ + f Pa’ + ‘$) - p7 y - pEea’- P (v,) - x’p (u,) = 0 
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i.e. multipliers pt,..., l.&,are continuous when crossing a’b’. 

Multipliers &, . . ,p4 may be discontinuous not only along line u’b’, the boundary 

of the two different flow regions in crossing which all of the normal derivatives of gas 
parameters become discontinuous, but also along certain of the characteristics of the 
first and second set. If [pi] is the difference of lri on the two sides of discontinuity, 
then along such characteristics 

5’ [p,l + [jJ*l = 0, (u - VaJ’) [pJ + p IpJ = 0 

II-4 + kl [prl = 0, Ipal = tp41 = [p,l = i&l = 0 

(4.9) 

These equalities together with the differential equation- which is obtained by substitut- 
ingin(4 2) for ,pLr, ..,p, their jumps, and omitting terms proportional to JL~, . . , pa , 
completely defines the changes of Lagrange multiplier jumps along the discontinuity 
lines. 

After the necessary integration we obtain 

l*li=$Y”‘*+ (Uxp + vp(u _ vse))“‘exp ([U dy) ( (i = 1, 2) (4.10) 

where the constant of integration k, (k,) corresponds to the case in which the discontinu- 
ity is a characteristic of the first (second) set, and CJ is a function of the stream parame- 

afx at,, &.*a a’, 

+ P (vx’- 4 ap -d ap + * ( 1 ( Pap -is- PZ ’ 5 + d/v + ap ) 

nx’ - u 
+- 

[ 
tx-g- 

aq % 

Ph, 
z’f, + 2’ x - p (VZ’ - u) &. 1 - 

a (V,--V)f+Q 
_ k!2? g + [i + z’e _ (“xf 4 ] 

hP P 

ph 
P 

5. Besides the contour kink points which in accordance with the last condition of 
(4.4) result in the discontinuity of multipliers pr , .., p4 along the characteristics 
reaching these points (ek and f?TZ in the case shown on Fig. 1) there is yet another 

cause of discontinuity formation defined by relations (4.9) and (4.10). 
We shall prove that, as in the derivation of(4.10). we have along db 

pa =klyllavx’ ( (uZ.+v)~u_v~~))(hexp~UdY) 
0 

and that at point b in accordance with the first and last of conditions (4.4) 

k, = vbyb-“lty p (“uT7Lj] F exp (- ‘i udy) 
0 

(5.1) 

Hence, for example, in the plane case (Y = 0) all along db including point d multi- 
plier ~2 is also different from zero when vb # 0. However, along segment hd of the 
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axis of symmetry we have by virtue of the last but one of conditions (4.4) pa =O, con- 
sequently the characteristic of the second set reaching d is a line of disco&n&y of 
multipliers p1 , . . , p4. Taking into account that along the axis u = 0, and that x’ 

for the first and second set characteristics differ as to their signs only, we find from(5.1) 
and (4.10) that for v=O the discontinuity along “reflected” characteristic of the second 
set is defined by Formuia (4.10) kl=klJ/-=-i (5.2) 

if [IL,] is taken as the difference of values of pj to the left and right of the charac- 
teristic. 

It is evident from (5.1) that in the arisymmetric case pad = 0 when k, $= 0, hence, 
the condition ~1 = 0 is not violated at point d. It.can be shown, however, that while to 
the left of d the magnitude /Qx s aps/dX is identically zero, in the case of v = 1 

the magnitude psx tends to infinity as y’/z when approaching the axis of symmetry 

along &b . This leads to the conclusion that the reflected characteristic dn is a line 

of discontinuity of not only of’ psx, 1 but also of the multiplier pz itself. Here, as in the 

plane case, ks in (4.10) is determined from (5.2). 
Without going into the details of a rather cumbersome proof of the adduced statements, 

we shall note that it is based on the use of semicharacteristic variables &’ where E’ is 
a constant along every characteristic of the ith set, with variables ys’ used for analy- 
zing the behavior of pzr along db , and variables yE2 along the reflected characteristic. 

Condition (5.2) also holds for a discontinuity reflected from the axis of symmetry and 

arriving, for example, along a characteristic of the first set (as at point f on Fig. 1). In 
this case it is immaterial whether [p,] is taken as the difference of the left-, and right- 

hand values of pi, or vice versa. It is only important to use the same definition of [pi] 
for the incoming and the reflected characteristics. 

A discontinuity of multipliers reaching the wall along a characteristic of the second 

set is reflected along the characteristic of the first set. We denote by subscript minus 
(plus) the flow parameters and the Lagrange multipliers to the left (right) of the reflec- 
tion point of the wall and, as in (4.10). subscripts 1 and 2 to the magnitudes along the 
characteristic of the first and second set respectively. If the reflection point ?Z is a point 
at which %’ is continuous. then at that point by virtue of (4.8) and (4.9), and of the last 

where all parameters relate to the reflection point. The term ia_ - a+)n6s, appears 
in this case outside of the integral of 6~. 

The intensity of discontinuity along the characteristic of the first set reaching a kink 
point is determined from the last equality of (4.4) written for a point of the wall to the 
ieft of the angle point for values of’ pi at the upper point of the second set characteristic 
bounding the rarefaction wave beam on the left, independently of whether it is one of 
the characteristics of a beam of lines of discontinuity of ~1,, . . , p,, or not (boundary 
characteristics of beams emanating from k and m, as well as other characteristics are 

shown on Fig. 1 by thin lines). 

6, Having selected the Lagrange multipliers in accordance with the equations and 

conditions derived in the two preceding sections, we obtain for bx the expression of the 
form (variations of point 6 are not considered here) 
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6% = (U”‘AX + U”‘Ay)b + x ( V”‘AX + V"'Ay)j f 
j 

+ (a--- ~+)7t~~n + s S&Z&J+ 1 Sdzdy+ [F,-((F,~)')~zdy (6.1) 
s 

z( I>0 au)=3 b 

The first two integrals are taken here along ah, and summation is carried out at all 
kink points, L\ x and A !/ ,are the coordinate increments of these points, n is the point 

of continuity of E’ which is the point of reflection of discontinuity of multipliers 

(? ;;;: 
pr :if there are several such points one more summation sign is to be added in 

Coefficients u(t) and v(t) , and s are defined by Formulas 

U(l) = (U&t + IX)_ - F=*+, U” = (0 - x’Ox - ax’), - F, 

j+ 
vy = (a,~#_+ a_- fDx*f-Q+)j - 

$[ 
CLlVdU + Pr 

( 
v&J + i&J) + 

J- 

+ lM((Pv) + CL. (vd+dp)] 
j+ 

Vy = [(a - XW,~ - ax’), - (CD - x’u& - L%X4)+]j + 
$[ ( I”, udu+ $dP) -I- 

+ I&V + 14 (p:; + ~4 (da - $ dp)] 

s= %-P>x*)'-~'+ v(~'llp--'1)1)U'iPlla[(pu)'+ vy-$w1 

The integrals in the expression of Vi(‘) are computed at the angle point, i. e, for 
values y e y, and x ES XJ, and x’ = u/v. 

If the contour a~ is an optional one (i. e. yields maximum x), then in accordance 
with (6.1) and (5.3) it must satisfy the following necessary conditions 

SJ=O for z(y)>O, S> 0 for Z(Y) = 0 (along ab) 

F, - ( Fxe)' > O(along bg), US’ > 0, UP’ = 0 

V*(l) = V*@) = 0 I 2 for 2 (?J.) > 0 I 

Vj”‘g’(?Jj) + yp’ > 0, V(‘)j > 0 for Z (yj) = 0 

[Pnln, = 0 for (L’- E,‘), = 0 

(6.2) 

in which the conditions at point b have been written for the case of ut, < yti only. 
It is evident from the last condition of (6.2) that the second set characteristics which 

are lines of discontinuity of the Lagrange multipliers are in the case of an optimal con- 
tour either absent, or reach kink points of the wall contour, i.e. they belong to the cor- 
responding rarefaction wave beams. Hence, in accordance with (5.1). (5.2) and (4.10) 
either “b =O, or n is an angle point (Fig. 1). This situation will repeat itself until a 
characteristic of the first set emanating from the next following angle point intersects 
characteristic ah. If Qz G 0 which happens, for example, in the absence of isoperimet- 
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ric conditions, then equality vb = d cannot generally be fulfilled. At the same time 

two additional arbitrary selections correspond 

at each angle point to the two equalities 

appearing in (6.2) when I (v,) > 0, viz., the 

z,@oordinate, and the magnitude of the kink 

(E’+ - E!_),,. Thus, if the closing character- 

istic of an optimal contour begins at the axis 
of symmetry outside of the initial rarefaction 

a wave fan, and provided there are no shock 
waves in the influence area, then such a con- 

tour will have along section ab not less than 

Fig. 2 
one kink point (notations on Fig. 2 are the 
same as on Fig. 1). 

Authors are grateful to L. E. Sterin for bringing this problem to their attention 
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Sufficient stability conditions (1.8). (1.10) are defined. Stability for large Reynolds num- 

bers R is analyzed by asymptotic and numerical methods; it is shown that the flow is 

stable for R -, 00 
1. The stability of plane Couette flow is determined by the eigenvalues of the prob- 

lem condidered in p] 

(Da - a2)2cp-iiaR(y-c)(Di-ua")cp = 0 

Dq+i)=cp(fl)=O (-.I\< Yb 1) 
(D = 2) (1.1) 

The flow is stable if for any values of the Reynolds number R and of the wave num- 
ber a, all of the eigenvalues c = C, f iq have a negative imaginary part. 

Investigators [‘2 - 8] of the problem (1.1) assumed the flow to be stable; this assump- 
tion had not been completely substantiated thus far, however, because either particular 
values of parameters,fi and a, or special eigenvalues only had been considered. The 
particular case of R +co is considered below, but in contrast to papers [‘2 and 5 - 71 

only one of the quantities (* ) e = (a~)_7,, 6 = ae 

which express the eigenvalues is assumed to be small. 
The characteristic relationship of problem (1.1) can be presented in the form c2] 

‘) The case of small 8 and arbitrary, 6 was inaccurately analyzed in [S], see l2 and 51. 


